The receptive field, or sensory space, is a delimited medium where some physiological stimuli can evoke a Sensory neuron neuronal response in specific .
Complexity of the receptive field ranges from the unidimensional chemical structure of to the multidimensional spacetime of human visual field, through the bidimensional skin surface, being a receptive field for touch perception. Receptive fields can positively or negatively alter the membrane potential with or without affecting the rate of .
A sensory space can be dependent of an animal's location. For a particular sound wave traveling in an appropriate transmission medium, by means of sound localization, an auditory space would amount to a reference system that continuously shifts as the animal moves (taking into consideration the space inside the ears as well). Conversely, receptive fields can be largely independent of the animal's location, as in the case of place cells. A sensory space can also map into a particular region on an animal's body. For example, it could be a hair in the cochlea or a piece of skin, retina, or tongue or other part of an animal's body. Receptive fields have been identified for neurons of the auditory system, the somatosensory system, and the visual system.
The term receptive field was first used by Sherrington in 1906 to describe the area of skin from which a scratch reflex could be elicited in a dog. In 1938, Hartline started to apply the term to single neurons, this time from the frog retina.
This concept of receptive fields can be extended further up the nervous system. If many sensory receptors all form synapses with a single cell further up, they collectively form the receptive field of that cell. For example, the receptive field of a ganglion cell in the retina of the eye is composed of input from all of the photoreceptors which synapse with it, and a group of ganglion cells in turn forms the receptive field for a cell in the brain. This process is called convergence.
Receptive fields have been used in modern artificial deep neural networks that work with local operations.
Large receptive fields allow the cell to detect changes over a wider area, but lead to a less precise perception. Thus, the fingers, which require the ability to detect fine detail, have many, densely packed (up to 500 per cubic cm) mechanoreceptors with small receptive fields (around 10 square mm), while the back and legs, for example, have fewer receptors with large receptive fields. Receptors with large receptive fields usually have a "hot spot", an area within the receptive field (usually in the center, directly over the receptor) where stimulation produces the most intense response.
Tactile-sense-related cortical neurons have receptive fields on the skin that can be modified by experience or by injury to sensory nerves resulting in changes in the field's size and position. In general these neurons have relatively large receptive fields (much larger than those of dorsal root ganglion cells). However, the neurons are able to discriminate fine detail due to patterns of excitation and inhibition relative to the field which leads to spatial resolution.
The receptive field is often identified as the region of the retina where the action of light alters the firing of the neuron. In retinal ganglion cells (see below), this area of the retina would encompass all the photoreceptors, all the rod cell and cone cell from one eye that are connected to this particular ganglion cell via bipolar cells, , and . In binocular neurons in the visual cortex, it is necessary to specify the corresponding area in both retinas (one in each eye). Although these can be mapped separately in each retina by shutting one or the other eye, the full influence on the neuron's firing is revealed only when both eyes are open.
Hubel and Wiesel e.g., Hubel, 1963; Hubel-Wiesel, 1962 advanced the theory that receptive fields of cells at one level of the visual system are formed from input by cells at a lower level of the visual system. In this way, small, simple receptive fields could be combined to form large, complex receptive fields. Later theorists elaborated this simple, hierarchical arrangement by allowing cells at one level of the visual system to be influenced by feedback from higher levels.
Receptive fields have been mapped for all levels of the visual system from photoreceptors, to retinal ganglion cells, to lateral geniculate nucleus cells, to visual cortex cells, to extrastriate cortical cells. However, because the activities of neurons at any one location are contingent on the activities of neurons across the whole system, i.e. are contingent on changes in the whole field, it is unclear whether a local description of a particular "receptive field" can be considered a general description, robust to changes in the field as a whole. Studies based on perception do not give the full picture of the understanding of visual phenomena, so the electrophysiological tools must be used, as the retina, after all, is an outgrowth of the brain.
In retinal ganglion and V1 cells, the receptive field consists of the center and surround region.
The organization of ganglion cells' receptive fields, composed of inputs from many rods and cones, provides a way of detecting contrast, and is used for Edge detection. Each receptive field is arranged into a central disk, the "center", and a concentric ring, the "surround", each region responding oppositely to light. For example, light in the centre might increase the firing of a particular ganglion cell, whereas light in the surround would decrease the firing of that cell.
Stimulation of the center of an on-center cell's receptive field produces depolarization and an increase in the firing of the ganglion cell, stimulation of the surround produces a hyperpolarization and a decrease in the firing of the cell, and stimulation of both the center and surround produces only a mild response (due to mutual inhibition of center and surround). An off-center cell is stimulated by activation of the surround and inhibited by stimulation of the center (see figure).
Photoreceptors that are part of the receptive fields of more than one ganglion cell are able to excite or inhibit postsynaptic neurons because they release the neurotransmitter glutamate at their , which can act to depolarize or to hyperpolarize a cell, depending on whether there is a metabotropic or ionotropic receptor on that cell.
The center-surround receptive field organization allows ganglion cells to transmit information not merely about whether photoreceptor cells are exposed to light, but also about the differences in firing rates of cells in the center and surround. This allows them to transmit information about contrast. The size of the receptive field governs the spatial frequency of the information: small receptive fields are stimulated by high spatial frequencies, fine detail; large receptive fields are stimulated by low spatial frequencies, coarse detail. Retinal ganglion cell receptive fields convey information about discontinuities in the distribution of light falling on the retina; these often specify the edges of objects. In dark adaptation, the peripheral opposite activity zone becomes inactive, but, since it is a diminishing of inhibition between center and periphery, the active field can actually increase, allowing more area for summation.
+ Original Organization of Visual Processing Cells by Hubel and Wiesel ! Cell Type !! Selectivity !! Location |
Brodmann area 17 |
Brodmann area 17 and 18 |
Brodmann areas 18 and 19 |
An in-depth theoretical analysis of how the orientation selectivity of simple cells and complex cells in the primary visual cortex relate to inherent properties of visual receptive fields is given in. T. Lindeberg (2025) "Orientation selectivity properties for the affine Gaussian derivative and the affine Gabor models for visual receptive fields", Journal of Computational Neuroscience.
When used in this sense, the term adopts a meaning reminiscent of receptive fields in actual biological nervous systems. CNNs have a distinct architecture, designed to mimic the way in which real animal brains are understood to function; instead of having every neuron in each layer connect to all neurons in the next layer (Multilayer perceptron), the neurons are arranged in a 3-dimensional structure in such a way as to take into account the spatial relationships between different neurons with respect to the original data. Since CNNs are used primarily in the field of computer vision, the data that the neurons represent is typically an image; each input neuron represents one pixel from the original image. The first layer of neurons is composed of all the input neurons; neurons in the next layer will receive connections from some of the input neurons (pixels), but not all, as would be the case in a MLP and in other traditional neural networks. Hence, instead of having each neuron receive connections from all neurons in the previous layer, CNNs use a receptive field-like layout in which each neuron receives connections only from a subset of neurons in the previous (lower) layer. The receptive field of a neuron in one of the lower layers encompasses only a small area of the image, while the receptive field of a neuron in subsequent (higher) layers involves a combination of receptive fields from several (but not all) neurons in the layer before (i. e. a neuron in a higher layer "looks" at a larger portion of the image than does a neuron in a lower layer). In this way, each successive layer is capable of learning increasingly abstract features of the original image. The use of receptive fields in this fashion is thought to give CNNs an advantage in recognizing visual patterns when compared to other types of neural networks.
|
|